学术咨询

让论文发表更省时、省事、省心

面向飞行器结构健康管理的数字孪生及应用研究综述

时间:2021年04月29日 分类:农业论文 次数:

摘要:数字孪生一词起源于美国国防部对飞行器机体数字孪生的研究,目前已经成为全球制造业的前沿热点领域。解析了数字孪生的概念及其中的结构健康管理元素,提出了包含生命周期维、仿真精度维、智能程度维的数字孪生成熟度模型;梳理了面向结构健康管理的数字

  摘要:数字孪生一词起源于美国国防部对飞行器机体数字孪生的研究,目前已经成为全球制造业的前沿热点领域。解析了数字孪生的概念及其中的结构健康管理元素,提出了包含生命周期维、仿真精度维、智能程度维的数字孪生成熟度模型;梳理了面向结构健康管理的数字孪生关键技术,特别是4项关键的数字工程技术能力,包括多尺度建模、多物理特性建模、模型与实验的集成和概率性/不确定性分析;分析了数字孪生支撑的结构完整性预测的功能流程,总结了美国空军研究实验室和国家航空航天局支持的研究,探索了基于数字孪生的生命周期管理范式。随着更高价值飞行器的不断研发和使用,以及实验的深入、机理的突破、数据的积累和算力的提升,集成了数字孪生功能的自知晓飞行器将会成为一个趋势。

  关键词:物理特性模型;概率性分析;寿命预测;机器学习;高超声速

飞行器

  当前,各国军方和民航企业对于价格昂贵的飞行器的维修保障方式,绝大部分仍然是定期检修———在作战飞机或客机完成一定时间的飞行小时或在一个固定的周期性间隔之后进行,这与汽车保养并无不同。然而,这样的方式一方面可能造成过度检修,让飞行器的维修保障成本居高不下;另一方面可能造成失效隐患,导致更严重的机毁人亡事故。

  航空方向论文范例:国际航空运输中新侵权行为法律适用原则

  美军运营着世界上最庞大的飞行器机队,拆解结构状态良好战机带来的高昂的维修保障成本,以及因结构完整性问题导致的低下的装备完好性一直困扰着美军。随着建模仿真、物联网和大数据技术的发展,美军为了实现增强型视情维修(CBM+),一方面开发了结构健康监测(SHM)和预测与健康管理(PHM)技术,推动数据驱动的决策;另一方面不断建立、完善各类机理模型,找寻裂纹产生的原因和方式,希望在数字空间消灭一切问题,推动模型贯穿的决策。

  2018年,美国国防部发布《数字工程战略》[1],将数字系统模型、数字线索和数字孪生作为支撑建立装备全生命周期数字工程生态系统的核心纽带[2],推动美军以模型和数据为核心谋事、做事的数字工程转型。其中,数字孪生被美军寄予重托,利用制造、使用和维修数据,基于数字孪生仿真实现机体结构寿命预测,将成为解决困扰飞行器维修保障难题的一大利器[3]。“数字孪生”一词起源于美国国防高级研究计划局(DARPA)、空军研究实验室(AFRL)以及国家航空航天局(NASA)对于飞行器机体结构完整性预测与生命周期管理的研究工作[4-10]。

  根据美国国防部的定义[11],数字孪生是由数字线索使能,使用最佳的可用模型、传感器信息更新以及输入数据,对已建造系统的一个多物理、多尺度和概率性的集成仿真,以镜像和预测相对应的物理孪生生命周期的活动/性能。自称在2002年就提出数字孪生概念的迈克尔·葛瑞夫斯教授[12],在2014年发表了阐述数字孪生概念的白皮书[13],认为数字孪生是一组虚拟的信息结构,用于描述一个潜在的或实际存在的制造产品,描述了从微观原子层到宏观几何层的、能够从物理产品中探测到的所有信息。

  笔者也提出了自己的定义[14]:从本质上来看,数字孪生是一个对物理实体或流程的数字化镜像,创建数字孪生的过程,集成了物理特性模型、人工智能/机器学习和传感器数据,以建立一个可以实时更新的、现场感极强的“真实”模型,用来支撑物理产品生命周期各项活动的决策。2009年,AFRL启动了飞行器“机体数字孪生”(ADT)研究[15-17],2013年,空军《全球地平线》顶层科技规划将数字线索及数字孪生列为“改变游戏规则”的颠覆性机遇[18]。

  同年,AFRL在前期ADT以及DARPA项目的基础上,启动了概率性和预测的单个飞行器跟踪(P2IAT)项目[19],分别由诺·格公司[20-22]、GE/洛·马[23-25]领衔,从2013年持续到2017年,旨在进一步探索数字孪生支撑的结构完整性预测。DARPA通过项目孵化了专门进行结构完整性预测的虚拟孪生软件[26],并用于飞行器的虚拟寿命管理[27]。NASA则进一步研究如何通过数字孪生实现面向载荷控制的损伤预测[28],甚至希望开发一种集成基于数字孪生的结构健康管理功能的自知晓飞行器[29]。

  工业界方面,GE通过其工业互联网平台[30]探索数字孪生在航空发动机等涡轮机产品中的应用。波音提出一个基于模型的系统工程(MBSE)宝石模型[31],数字孪生全生命周期贯穿,强调利用“已交付”之后的数据更新数字孪生进行虚拟运行和状态预测,并且正在探索以低逼真度数字孪生完成高速分析[32]。洛·马将数字孪生列为2018年的六大技术趋势之首[33],并且提出了名为“产品数字世界”的数字工程生态系统概念[34],旨在建立一个集成了人员、流程、工具、物料、环境和数据的框架,将跨产品全生命周期和所有学科的物理域与数字域连接起来,构建镜像物理世界万物的数字孪生,以更好地完成持续保障和服务。

  中国飞机强度所提出构建强度数字孪生[35],正在攻克高保真度模型构建和仿真、数字化设计与验证、健康监测与检测、寿命管理四大技术群。中国空间技术研究院提出了数字孪生在可重复使用飞船的地面伴飞系统中的初步应用框架[36],用于全生命跟踪并预示飞行器的行为状态,以实现更好的管理与决策。通过数字孪生,可基于单个飞行器的使用记录,预测结构组件何时到达寿命期限,调整结构检查、修改、大修和替换的时间。NASA预计到2035年[37],数字孪生的应用将可使飞行器维修保障成本实现减半,而服役寿命总体延长10倍。

  美国空军下一代高教机T-7A项目中明确要求建立数字孪生[38],波音在其方案中应用数字孪生,仅用3年时间完成从概念到首飞的过程,击败了两个基于提供现有机型改进型的竞争对手,数字孪生将伴随每架飞机的生命周期。美国有空军人士对此提出了担忧[39],认为数字孪生的相关软件开发和维护成本可能在1~2万亿美元,并需要上百年的时间才能完成。不过,美国空军已经在2020年6月宣布启动“数字战役”[40],全面建设包括数字孪生在内的数字工程生态系统,而且,利用数字孪生已经写入“下一代空中主宰”等项目的采办策略草案中。

  目前,数字孪生得到了国内外各界的广泛重视,概念内涵愈发丰富,应用场景也极大扩展,但是,也存在着概念繁多的问题和片面强调资产互联和数据分析而忽视建模仿真的应用倾向,这对于依赖基于机理模型和工业知识实现精准的结构健康管理而言,显然是不合适的。本文将回归概念本源,分析面向结构健康管理的数字孪生以及基于数字孪生的飞行器结构健康管理,探讨其在数字工程领域的关键技术,以及未来基于数字孪生的飞行器生命周期管理范式。

  1数字孪生概念中的结构健康管理元素

  美国国防部对于数字孪生的定义就来源于NASA和AFRL针对飞行器结构健康管理的ADT研究。构建ADT,气动模型、有限元模型、损伤增长模型等是最佳的可用模型,飞行数据、材料性能状态等是实时的传感器信息,特定已建造装备的尺寸、检查与维修数据是历史的输入数据。ADT基于不断演进的物理特性模型,能够进行不同尺度下的结构分析仿真,一方面可以再现和跟踪特定装备的飞行条件与结构响应,另一方面还可以预测未来使用环境中的损伤涌现,输出一个基于概率的计算结果。

  2面向结构健康管理的数字孪生

  2.13个维度的数字孪生成熟度模型

  当前数字孪生存在着概念混乱的问题,很多应用实际上将传统的CAX模型简单等同于数字孪生。数字孪生伴随装备的生命周期,面向不同的应用可以利用不同逼真度的模型,而且应用的自动化和智能化程度也有区别,不适宜统统称作数字孪生。

  智能系统技术公司按复杂度将数字孪生分为了4个成熟度等级[42]:孪生之前、初始孪生、自适孪生和智能孪生;安世亚太按能力成熟度模型提出了5级成熟度[43]:数化、互动、先知、先觉和共智。两者的前4级概念基本相同。结合这两种等级,面向结构健康管理,作者提出3个维度的数字孪生成熟度模型———生命周期维、仿真精度维和智能程度维,每个维度都分为5级成熟度,每一种数字孪生的特性和能力,都由这3个维度共同确定。

  (1)生命周期维。考虑装备全寿命周期数字孪生的演进。一级:设计级,在装备设计过程中,理想的模型中没有融入真实世界中特定装备的任何数据,主要是来理解和降低结构失效风险,以辅助设计决策。二级:制造级,在装备开始制造到总装下线之前,可融入实际的尺寸数据,随时消除设计或制造缺陷。三级:试验级,装备下线但未交付之前,模型中融入了已建造和已试飞数据,主要是获知装备的交付性能,建立孪生基线。四级:服役级,装备服役之后到退役之前,模型中不断融入并更新健康状态、维修历史等数据,主要是实现性能跟踪和预测性维修,每次大修后更新孪生基线,并用于分析可能未发觉的设计缺陷。

  3基于数字孪生的结构健康管理应用

  3.1数字孪生支撑的结构完整性预测流程设计

  基于数字孪生的结构健康管理应用的核心是数字孪生支撑的结构完整性预测流程,诺·格实施的P2IAT项目中[21],单个飞行器跟踪的概念也以该流程为核心。进行结构完整性预测时,要将多种模型集成到单个飞行器的数字孪生中,并且综合历史数据库、构型控制、虚拟损伤传感器等功能,通过高逼真度的材料建模(内含原材料数据、材料工艺数据等)交互材料的历史数据,通过高逼真度的结构分析(内含结构模型和载荷历史)交互材料状态演进信息。基础仍然是更加集成的结构模型和材料状态演进模型,前者包括压力有限元、结构动力学、气动弹性、声学、热传导等,后者包括刚度、强度、疲劳、腐蚀、氧化等。

  4结束语

  (1)随着更加昂贵的作战飞机、多功能无人机以及可重复使用高超声速飞行器不断研发并使用,对其进行实时、高效结构健康管理的需求越来越强烈,数字孪生将无疑在这一领域发挥巨大作用,并将形成基于数字孪生的生命周期管理范式。

  (2)建立和应用数字孪生需要利用包括飞行数据记录仪、无损检测数据在内的所有信息,使用包括流体动力学、结构力学、材料科学与工程模型等在内的物理特性模型,建立概率性的分析手段,并且通过概率性分析的自动更新实现闭环。这就需要突破高精建模仿真、泛在采集传输、高效融合分析这三类关键技术,特别是多尺度建模、多物理特性建模、模型与实验的集成这几项高精建模仿真技术。

  (3)建立和应用数字孪生还将给飞行器结构和系统设计以及使用管理流程带来变革,比如需要开发面向可靠和经济可承受健康监测的设计方法、使用和状态数据的合成及安全保护工具、基于模型降阶的高速概率性仿真及确认手段、基于机器学习的机载智能数字孪生仿真系统、面向高效分析决策的功能定制和信息剪裁规则等。

  (4)未来,随着实验的深入、机理的突破、数据的积累和算力的提升,集成了数字孪生功能的自知晓飞行器将会成为一个趋势,这些数字孪生将在生命周期、仿真精度、智能程度这3个维度上同时达到成熟度4级,可减少这些高价值装备的结构风险,更好地实现其使命任务目标,降低全生命周期成本。

  参考文献:

  [1]GRIFFINMD.Digitalengineeringstrategy[R].U.S.DepartmentofDefense,2018.

  [2]刘亚威.管窥美军数字工程战略[J].科技中国,2018(3):30-33.

  [3]刘亚威.美军航空装备采办的数字工程转型[J].国际航空,2019(5):46-49.

  [4]SHAFTOM,CONROYM,DOYLER,etal.Modeling,simulation,informationtechnologyandprocessingroadmap[R].NASA,2010

  作者:刘亚威

NOW!

Take the first step of our cooperation迈出我们合作第一步

符合规范的学术服务 助力您的学术成果走向世界


点击咨询学术顾问